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bstract

This paper reports a modeling study of proton exchange membrane fuel cell (PEMFC) performance by using a support vector machine (SVM).
PEMFC is a nonlinear, multi-variable system that is hard to model by conventional methods. As regards the SVM, it has a superior capability for

eneralization, and this capability is independent on the dimensionality of the input data. These two merits combine to make it a powerful tool to
redict how a PEMFC will behave under different operating conditions. Herein a SVM model of a PEMFC system is built, optimized and tested.

irst, the model is determined with selected experimental data, and then it is used to predict PEMFC performance. It is shown that the model can
ake the prediction in 10 ms with the squared correlation coefficient as high as 99.7%. Therefore, the proposed black-box SVM PEMFC model

pplies to the simulation, real-time control and monitoring of a fuel cell’s performance.
2006 Elsevier B.V. All rights reserved.
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. Introduction

A fuel cell, which can provide energy for electric vehi-
les, power plants and so on, is probably the most promising
ype of renewable electric power source. The fuel cell vehi-
le, for example, is acclaimed as the vehicle of the future that
lmost all manufacturers have made a developmental prior-
ty. Among various kinds of fuel cells, the proton exchange

embrane fuel cell (PEMFC), with its low operating temper-
ture, high power density, high efficiency, fast startup, quick
esponse and zero emission, is the most suitable for vehicles.

sound model can help size, simulate, evaluate and optimize
EMFC research programs [1], and is thus of great importance to
esearchers.

The PEMFC system is a nonlinear, multi-variable system that
s hard to model. To date, many models have been developed, but

ost focus on the design of the PEMFC instead of its application.

hat matters most to PEMFC users, however, is not its relevant

nternal details but its performance under different operating
onditions. What they really need is a behavioral model, with

∗ Corresponding author. Tel.: +86 21 62932154; fax: +86 21 62932154.
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hich they can predict PEMFC behavior under various operating
onditions.

Motivated by this need and realizing the growing popularity
f the support vector machine (SVM) regression application,
e decided to make a modeling study of the PEMFC system
y using a SVM. The support vector machine was developed
y Vapnik [2] on solid VC-theory foundations. It has been
sed for classification in various domains of pattern recogni-
ion and lately, has handled regression problems successfully
3]. Superior generalization performance is obtained from SVM
egression and more importantly, the performance does not
epend on the dimensionality of the input data. In our study,
he proposed SVM model is built, optimized and tested with
ata obtained from a Ballard MK5-E PEMFC [4]. The experi-
ental results show that cell voltage is predicted with a mean

quared error of 0.02% and a squared correlation coefficient of
9.7%.

This paper consists of five sections. The first section serves as
n introduction to our study. The second one discusses various
xisting PEMFC models briefly. The third one is concerned with

VM theories. In the fourth section, the experimental process
f building, testing and optimizing our SVM PEMFC model are
resented in detail. Conclusions and suggestions for future work
re summarized in the last section.
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Fig. 1. PEMFC components.

. Existing PEMFC models

A brief review of various existing PEMFC models is given in
his section. Both advantages and disadvantages of the following
nalytical and experimental models are discussed.

A fuel cell is a chemical reactor that, when fed with fuel
nd air, can produce electricity continuously. The fuel used is
etermined by the type of the fuel cell. In the case of a PEMFC,
ure hydrogen is commonly used. Pure hydrogen is fed into the
node as fuel and air is fed into the cathode as oxidant. Then,
romoted by the electrocatalyst, electrochemical reactions take
lace, and heat, carbon dioxide and water are produced (Fig. 1).

Some analytical PEMFC models have been put for-
ard, including simplified one-dimensional models [5,6],

wo-dimensional models [7–9], and a more complex three-
imensional model [10]. Although these models can help ana-
yze and optimize fuel cells in the laboratory context, they have
imits. The simplified one-dimensional models are short on accu-
acy and the two-dimensional and three-dimensional models,
ith a few immeasurable parameters, are too complicated for
ost PEMFC users. Consequently, they are not suitable for engi-

eering applications. An empirical modeling approach will be
ore practical for PEMFC users, from which they can deduce
EMFC stack responses without a knowledge of the internal
etails.

There are several experimental PEMFC models, among
hich the most influential one was put forward by Kim et al.

11]

cell = E0 − b log

(
I

Acell

)
− r

I

Acell
− m exp

(
n

I

Acell

)
(1)

he equation expresses the relationship between cell voltage

cell and current I. In it, Acell stands for cell area and other

ymbols are coefficients: open cell voltage E0, growth rate of
yproducts n, activation coefficient b, ohmic resistance coeffi-
ient r and mass transport coefficient m. Eq. (1) provides a good

t
s
c
l

Fig. 2. PEMFC system.

ndication of PEMFC performance, but its coefficients relate too
losely to operating parameters, such as cell temperature, gas
ressure and gas flow rate (Fig. 2). As a result, a given set of oper-
ting parameters requires a corresponding set of coefficients.
nless the coefficients change with the operating parameters,

he equation produces the wrong results. But it is difficult to
eep the operating parameters unchanged for the whole period a
EMFC is working. This drawback greatly restricts the model’s
pplication.

Jemei et al. [12] utilized artificial neural network (ANN)
ethodology and came up with an interesting and powerful

olution, i.e. an efficient static PEMFC model. In their study,
s experimental and simulated results are very close, the model
an be implemented without any difficulty in a complete vehicle
owertrain simulation. Highly efficient as it is, however, their
odel has two main weaknesses. Firstly, although only four

xperimental learning patterns are needed for the training stage
f the network, the training strategy and the topology of ANN are
ormally determined by experience, which weakens the model’s
bjectivity. Secondly, ANN converges slowly and gets easily
rapped in local extremum. Therefore, it is not appropriate for
eal-time applications.

In short, a new modeling approach is needed to provide a bet-
er solution. In the following sections, the SVM-based modeling

ethod will be presented in detail.

. SVM theories

The support vector machine, based on statistical learning
heories or VC-theories, is a novel and powerful tool. It was
riginally developed at AT&T Bell Laboratories by Vapnik for
lassification in various domains of pattern recognition, but has
ecently expanded successfully to deal with regression prob-
ems. SVM has a superior ability of generalization to ANN. SVM
egression employs the structural risk minimization (SRM) prin-
iple to minimize risks rather than the empirical risk mini-
ization (ERM) principle that is used in most traditional ANN
odels. SVM is also more robust than ANN. In terms of fault-
olerance, ANN behaves unsatisfactorily; all training data, even
mall noises and errors, can influence its performance. In the
ase of SVM, however, with the introduction of the ε-insensitive
oss function, it uses only part of the training data, i.e. support
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power level, cell temperature may vary within a large range.
Finally, this simplification does not impair the validity of our
ig. 3. A linear SVM regression. Points lying outside the �-tube are named
upport vectors.

ectors (SVs), to generate output. As a result, the errors smaller
han ε are neglected and the notable errors are compensated by
lack variables. Next, the theoretical background of SVM will
e explained briefly.

For a given data set D = {(xi, yi)|i = 1, . . . , n} ⊂ R
d × R,

i ∈ R
d is the input data and yi ∈ R is the output data. In a linear

ase, the mission of SVM regression is to approximate the data
et D by a function

(x) = 〈w, x〉 + b with w ∈ R
d, b ∈ R (2)

here 〈·, ·〉 denotes the dot product between w and x in R
d.

ig. 3 illustrates a linear SVM regression. In a nonlinear case

w, x〉 =
nSV∑
i=1

(α+
i − α−

i )K(xi, x) (3)

here K (xi, x) is a predefined kernel function, and nSV the num-
er of support vectors. The values of weights α+

i , α−
i are decided

uring the training process. The kernel function is employed to
ap the nonlinear data into a high dimensional feature space
here linear regression is to be performed. Eq. (3) is thus rewrit-

en as

(x) =
nSV∑
i=1

(α+
i − α−

i )K(xi, x) + b (4)

upport vector regression uses the SRM principle to solve Eq.
4). The SRM principle requires that Eq. (4) be flat, which is
ubject to the minimum of the functional

(w, ξ) = 1
2 ||w||2 + C

n∑
i=1

(ξ−
i + ξ+

i ) (5)
onstrained by the ε-insensitive loss function

ε(y, f (x, α)) = |y − f (x, α)|ε =
{

0, if |y − f

|y − f (x, α)| − ε, otherwise
Sources 160 (2006) 293–298 295

here ε > 0 is a predefined constant. The regression algorithm
ses the ε-insensitive loss function to describe how the estimated
unction f(x) deviates from the true one. It accepts errors smaller
han ε, but rejects larger ones. The regression can be converted
o a convex optimization problem

minimum Φ(w, ξ) = 1
2 ||w||2 + C

n∑
i=1

(ξ−
i + ξ+

i )

subject to

{
Lε(y, f (w, α))

ξ−
i , ξ+

i > 0

here C > 0 is a pre-specified constant, and ξ−
i and ξ+

i are slack
ariables. ||w||2 is the norm of w, and minimum of 1

2 ||w||2 means
hat f(x) should be flat. With only the constraint 1

2 ||w||2, the opti-
ization problem is sometimes infeasible; hence the variables

−
i and ξ+

i are added to promise the existence of a solution.
esides, the addition of these two variables allows of some
otable errors and makes the algorithm more robust. The con-
tant C adjusts the balance between the flatness and the permitted
rrors beyond ε. The area between f(x) + ε and f(x) − ε is called
he �-tube.

Implementing SVM algorithm by mathematical program-
ing is a highly skillful job, but fortunately, some software

ackages have already been developed. This paper employs
IBSVM [13], an efficient and easy-to-use software for SVM
lassification and regression.

. Modeling PEMFC by SVM

For a given PEMFC system, the relation between terminal
oltage U and current density I is influenced by many operat-
ng parameters: cell temperature T, air flow rate qO2, hydrogen
ow rate qH2, air pressure PO2 , hydrogen pressure PH2 , relative
umidity α, membrane humidity λ, etc. Accordingly, terminal
oltage U of PEMFC system is given by

= f (I, T, qO2, qH2, PO2 , PH2 , λ, α, . . .) (8)

p to now, no model has ever been able to accommodate all
hese operating parameters. Our SVM model is no exception.
n our experiment, current density I, which is decided by the
ncontrollable load, and cell temperature T are taken as vari-
bles, and other operating parameters are held constant. Among
ll the operating parameters, we single out cell temperature T as
ne of our variables. The reasons for doing so are as follows.

Firstly, it figures significantly in determining terminal voltage
. Secondly, it is easy to measure. Thirdly, although the stack

an be operated under a constant pressure and at a constant
ow rate, temperature is hard to be held constant in real-world
pplications. For example, since the stack nominal temperature
annot be attained at startup or when the stack runs at a low
(x, α)| ≤ ε
(6)
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Fig. 4. Illustration of the SVM PEMFC model, which is a feed-forward network.
The input is current density and temperature, and the output is voltage. Support
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Table 1
An example of cell temperature scaled to [0, 1]

Unscaled (◦C) Scaled

20 0
24 0.067
31 0.183
39 0.317
56 0.6
7
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C is that it is equal to the output range.

It is also important to choose an appropriate kernel function
and then assign proper values to its parameters. There are many
types of kernels: polynomial kernel, hyperbolic tangent kernel,
ectors and weights are decided during training.

tudy, which is aimed at modeling PEMFC by SVM. As
ointed out before, SVM generalization performance is inde-
endent of the dimensionality of the input data. This means
hat if our SVM model, obtained with the two variables, can

ake the prediction quite precisely, then a model taking into
ccount more variables can do it with the same degree of
recision. Besides, the new multi-dimensional model can be
btained easily; all needed is to add more variables to our model
nd train it again. Hence in our study Eq. (8) is simplified
s

= f (I, T ) (9)

t follows that the simplified given experimental data set is
= {((I, T )i, Ui)|i = 1, . . . , n}, where (I, T )i ∈ R

2 is the two-
imensional input data and Ui ∈ R is the output data. The aim of
ur study is thus to find an SVM model that approximates Eq.
9). The scheme of our proposed model is illustrated in Fig. 4
14].

Basically, it requires three steps to build an efficient SVM
odel: preparing training data, training the data to obtain an
VM model, and predicting the new input data with the obtained
odel [15].

.1. Preparing training data

Training data ought to cover the entire expected range
f operations of the final SVM model. For example, tem-
eratures from 20 to 80 ◦C and current densities from 0 to
00 mA/cm2 all should be covered. In most cases, training
ata should be scaled, normally linearly, to [0, 1] or [−1,
1]. An example of scaled temperature is shown in Table 1.
caling can increase the training speed and assist in select-

ng optimal SVM parameters. Another matter worthy of note
s that training data and testing data must be scaled to the

ame interval. In this paper, U − I data obtained at 24, 31, 39
nd 72 ◦C are used as training data, and all those obtained
t 56 ◦C as testing data (Fig. 5). All the data, including aver-
ged cell voltage, current density and temperature, are scaled to
0, 1].

F
3
m
3

2 0.867
0 1

.2. Selecting optimal SVM parameters

The key to obtaining a highly accurate SVM estimation is to
hoose a proper set of meta-parameters C, ε and kernel param-
ters. Regression application is essentially more difficult than
lassification. A lot of work has bee done on support vector
lassification but little on regression. Fortunately, however, a few
ecommendations on how to decide on appropriate SVM param-
ters, though quite contradictory and confusing, have been given
n the literature; and several basic rules can be extracted from
hem [16].

The constant ε is used to find the target function that not only
ies as close as possible to the border of the �-tube but also is
s flat as possible. The larger ε is, the flatter the function will
e, and the fewer SVs will be. On the other hand, however, a
arger ε leads to larger estimation errors. Therefore, the value of
ought to be determined in a way that it is proportional to the

nput noise level σ.
The constant C determines the balance between the com-

lexity or flatness of the function and the amount up to which
eviations larger than ε are tolerated. Because both C and ε can
ffect the complexity of the function, they should be adjusted at
he same time. This increases the difficulty of selecting the most
ppropriate parameters. The principle for deciding the value of
ig. 5. Characteristics of a Ballard 5 kW MK5-E PEMFC. It is composed of
6 cells; each cell has a 232 cm2 active area, graphite electrodes, and a Dow
embrane. Air pressure PO2 and hydrogen pressure PH2 are both regulated to
atm [4].
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Fig. 7. Averaged cell voltage predicted by the SVM model from 20 to 80 ◦C.
Current density varies from 0 to 700 mA/cm2. All the data have been scaled to
[0, 1].
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adial Base Gaussian Function (RBGF) kernel, B-splines ker-
el, two-layer neural networks kernel, etc. Polynomial kernels
re given by

(x, xi) = (〈x, xi〉 + c)p, p ∈ N, c > 0 (10)

yperbolic tangent kernels are given by

(x, xi) = tanh(θ + φ〈x, xi〉) (11)

BGF kernels are given by

(x, xi) = exp

(
−||x − xi||2

2σ2

)
(12)

mong all the kernels, RBGF kernel function is the most popular
ne that ought to be tried first [17], and is thus used in our study.

To determine the optimal parameters, we employ the cross
alidation method, which is often used in practical applications.
he method consists of three steps.

1) Using four groups of data obtained respectively at 24, 31,
39 and 72 ◦C as the training data set.

2) Training SVM with some parameters and predicting other
data, and then obtaining the degree of prediction accuracy.

3) Changing the parameters and repeating the above two steps
until a high degree of accuracy is obtained.

With RBGF kernel, ε is set to 0.005. After the above three
teps are carried out, the final optimal C is found to be 15 and σ

n the kernel is 0.5.

.3. Predicting with the SVM model

After training, an SVM model is obtained, which can be used
o predict new input data. First, the cell voltage at 56 ◦C with the
urrent density in the range from 0 to 700 mA/cm2 is predicted.

comparison between the predicted data and the experimental

ata is then made to evaluate the model’s prediction precision
Fig. 6). Next, all the data in the temperature range from 20 to
0 ◦C and the current density range from 0 to 700 mA/cm2 are
stimated (Fig. 7).

ig. 6. Averaged cell voltage predicted by the SVM model at 56 ◦C. Current
ensity varies from 0 to 700 mA/cm2. All the data have been scaled to [0, 1].
he mean squared error is 0.097% and the squared correlation coefficient is
8.6%.
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ig. 8. Averaged cell voltage predicted by the new SVM model at 56 C. Current
ensity varies form 0 to 700 mA/cm2. All the data have been scaled to [0, 1]. The
ean squared error is 0.02% and the squared correlation coefficient is 99.7%.

Although the results are quite satisfactory, the SVM model
an still be improved. As shown in Figs. 6 and 7, there are notable
rrors between the actual voltage and the predicted voltage at
he beginning of the curve. The reason is that while the curve
hanges greatly at the beginning, the training data are too few to
epresent the trend of this sharp turn. These few data, however,
re regarded as exceptional data points by SVM algorithm. For
xample, the first point in Fig. 6 is treated as an error and is com-
ensated by slack variables. To describe the curve in accurate
etail, we need more data points for the beginning of the curve.
herefore, several data points are supplemented to the beginning
f the curve and the new SVM model is trained again. Then the
ell voltage at 56 ◦C is predicted with the new model (Fig. 8).
omparing Fig. 6 with Fig. 8, we can see clearly that the preci-

ion at the beginning of the curve is greatly improved.

. Conclusions and suggestions for future work

An off-line modeling study of a fuel cell using a SVM, which

akes PEMFC as the example, is reported in this paper. It is shown
hat the optimized SVM model is more attractive and more com-
etitive than other modeling solutions in that it possesses a high
egree of precision and does not require a pre-knowledge of the
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uel cell. In our study, training a SVM with optimized parameters
eeds 1583 iterations and only 30 ms on a PIII 800 MHz com-
uter. The time for prediction is no more than 10 ms. Hence,
his black-box SVM model is most applicable for simulation,
eal-time control and monitoring of fuel cell performance.

Among all the operating parameters that can affect the
EMFC performance, only current density and temperature are

ncluded in our model. This is because, in accordance with SVM
heories, we can incorporate any other operating parameter into
more complete model without degrading the model’s gener-

lization performance or complicating the modeling process.
herefore, an online training and prediction algorithm with more
ariables can be considered in future work.

eferences

[1] J. Van Mierlo, P. Van den Bossche, G. Maggetto, Models of energy sources
for EV and HEV: fuel cells, batteries, ultracapacitors, flywheels and engi-
negenerators, J. Power Sources 128 (1) (2004) 76–89.

[2] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer, New
York, 1995.

[3] Y.B. Dibike, S. Velickov, D. Solomatine, M.B. Abbott, Model induction

with support vector machines: introduction and applications, J. Comput.
Civil Eng. 15 (3) (2001) 208–216.

[4] F. Laurencelle, R. Chahine, J. Hamelin, K. Agbossou, M. Fournier, T.K.
Bose, A. Laperrire, Characterization of a Ballard MK5-E proton exchange
membrane fuel cell stack, Fuel Cells 1 (1) (2001) 66–71.

[

[

Sources 160 (2006) 293–298

[5] D.M. Bernardi, M.W. Verbrugge, Mathematical model of the solidpoly-
mer-electrolyte fuel cell, J. Electrochem. Soc. 139 (9) (1992) 2477–2491.

[6] T.E. Springer, T.A. Zawodzinski, S. Gottesfeld, Polymer electrolyte fuel
cell model, J. Electrochem. Soc. 138 (8) (1991) 2334–2342.

[7] T.F. Fuller, J. Newman, Water and thermal management in solid-polymer-
electrolyte fuel cells, J. Electrochem. Soc. 140 (5) (1993) 1218–1225.

[8] T.V. Nguyen, R.E. White, Water and heat management model for proton-
exchange-membrane fuel cells, J. Electrochem. Soc. 140 (8) (1993)
2178–2186.

[9] K. Dannenberg, P. Ekdunge, G. Lindbergh, Mathematical model of the
PEMFC, J. Appl. Electrochem. 30 (12) (2000) 1377–1387.

10] S. Um, C.Y. Wang, Three-dimensional analysis of transport and electro-
chemical reactions in polymer electrolyte fuel cells, J. Power Sources 125
(1) (2004) 40–51.

11] J. Kim, S.M. Lee, S. Srinivasan, C.E. Chamberlin, Modeling of proton
exchange membrane fuel cell performance with an empirical equation, J.
Electrochem. Soc. 142 (8) (1995) 2670–2674.

12] S. Jemei, D. Hissel, M.C. Pera, J.M. Kauffmann, On-board fuel cell power
supply modeling on the basis of neural network methodology, J. Power
Sources 124 (2) (2003) 479–486.

13] C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines,
2001, Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm.

14] A.J. Smola, B. Scholkopf, A tutorial on support vector regression, Stat.
Comput. 14 (3) (2004) 199–222.

15] T. Hansen, C.J. Wang, Support vector based battery state of charge estima-

tor, J. Power Sources 141 (2) (2005) 351–358.

16] V. Cherkassky, Y.Q. Ma, Practical selection of SVM parameters and noise
estimation for SVM regression, Neural Networks 17 (1) (2004) 113–126.

17] R. Debnath, H. Takahashi, Kernel selection for the support vector machine,
IEICE Trans. Inf. Syst. E87-D (12) (2004) 2903–2904.

http://www.csie.ntu.edu.tw/cjlin/libsvm

	Modeling a PEMFC by a support vector machine
	Introduction
	Existing PEMFC models
	SVM theories
	Modeling PEMFC by SVM
	Preparing training data
	Selecting optimal SVM parameters
	Predicting with the SVM model

	Conclusions and suggestions for future work
	References


